
JET FLOW AROUND A SPHERE 

T. A. Vil'gel'mi 

A sphere  placed in a s lender  gas or  liquid jet  d i rec ted  ve r t i ca l ly  upward is held s tably  in the jet, 
but for  some re la t ionship  of the jet dimensions and the sphere  dimension the s tabi l i ty  is d is rupted and the 
sphere  is e jected by the jet .  

It is of i n t e r e s t  to c la r i fy  the r ea s on  for  the s table  behavior  of the sphere  in the jet, de te rmine  the 
force  maintaining the sphere  in the s table  equi l ibr ium s ta te ,  and find the magnitude of the ra t io  of the jet 
half-width to the sphere  radius  for  which the sphere  is e jected by the jet .  

The quest ion of the s tabi l i ty  of a sphere  in a s lender  ver t ica l  jet in appl icat ion to the flow about a 
c i rc le  is examined in [1], where  the hypothesis  was suggested that the jet  branching  point and convergence 
point lie on the s a m e  d i ame te r .  Without this s o r t  of hypothesis  the p rob lem does not have a unique solution 
within the f r a m e w o r k  of ideal fluid theory .  

J e t  flow about blunt bodies ,  pa r t i cu l a r ly  the sphere ,  was examined in [2], where  flow pas t  bodies  
whose dimensions  exceeded the dimensions  of the nozzle was studied a t  d is tances  up to 30-40 body 
d i ame te r s  f rom the initial sect ion of the jet .  It was es tab l i shed  exper imenta l ly  that  the re  is s e p a r a t i o n -  
f ree  flow over  a distance up to 8-10 ca l ibe r s .  It is a s sumed  that  the s e p a r a t i o n - f r e e  flow in this region is 
due to branching of the jet  into two nar row semibounded je ts .  As a r e su l t  of the p r e s s u r e  di f ference which 
develops (a tmospher ic  at the outer  edge, low p r e s s u r e  a t  the su r face  of the body) the jets p r e s s  close to 
the sur face  of the sphere  and flow pas t  the sur face  without separa t ion  [3]. 

In the p r e s e n t  study we examined the nature  of the flow about a sphere  suppor ted  in a ve r t i ca l  ax i -  
s y m m e t r i c  jet  for  the case  of centra l  flow. The sphere  d i ame te r s  a re  74 and 37 mmo The nozzle 
dimensions v a r y  in the range  f rom 6 to 74 m m .  

Genera l ly  speaking, the veloci ty  field behind the sphere  is defined by four p a r a m e t e r s :  approaching 
flow velocity,  nozzle rad ius ,  body dimension,  and distance f rom the nozzle exit  to the sect ion where  the 
f ront  point of the sphere  is located.  By v i r t u r e  of the affine nature  of the veloci ty  prof i les  at di f ferent  
sect ions of the f r ee  jet [4], we can take as the cha r ac t e r i s t i c  jet width the quantity Y, which is the dis tance 
f rom the axis to the point at  which the veloci ty  equals half the axial  ve loci ty  at the given sec t ion .  

The exper imenta l  r e su l t s  show that the nature  of the flow in the wake behind the body in the immedia te  
vicini ty  of the sphere  (0.054 ca l ibers )  depends on the ra t io  Y/R.  The value of Y is taken at the sect ion 
where  the frontal  point of the sphere  is located,  and R is the sphere  rad ius .  

If Y/R < 1 the flow pas t  the body is s e p a r a t i o n - f r e e ,  and the veloci ty  prof i le  has the f o r m  shown in 
Fig.  1 (curve 1) for  Y/R = 0.485. With inc reas ing  dis tance f r o m  the body, the prof i le  f lat tens out and at  
a dis tance of 0.5 ca l ibe r  is s i m i l a r  to the f r ee  jet veloci ty  prof i le .  If Y/R > 1 the prof i le  has  the fo rm 
shown in Fig.  la  (curve 2) for  Y/R = 1~19. A r e v e r s e  flow zone is obse rved .  In this case  the dimensions  
of the rec i rcu la t ion  zone i nc rea se  with i nc rea se  of Y/R,  approaching the d imensions  of the zone for  uni form 
flow pas t  the body. 

The ve loc i ty  prof i le  behind the sphere  becomes  un ive r sa l  for  the di f ferent  nozzles  if Y/R = const 
(Fig. la ,  curves  l a n d  2). 

Change of the initial ve loci ty  of the approaching s t r e a m  in the range  f rom 25 to 75 m / s e c  does not 
a l t e r  the flow pa t t e rn  for  constant  Y/R .  
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The kinematics  of the motion was investigated and it was found that the flow pattern depends 
essent ia l ly  on a single pa rame te r .  It is natural to suppose that the dynamics of the motion also depend 
on this pa ramete r .  Experiments  with a suspended sphere make it possible to determine easi ly the sphere 
drag force ,  which equals its weight. Using the technique of aerodynamic  suspension of the sphere without 
sca les  and taking the flow velocity equal to the average velocity at the section where the sphere is s u s -  
pended, we obtain the sphere drag coefficient 

= 8rag / gd2pv  "2 

Here m = sphere mass ,  d = sphere diameter ,  v = average velocity,  p = gas density, and g = gravity 
accelerat ion;  g depends on the dimensionless  pa r ame te r  Y/R.  

The drag coefficient is small  for Y/R < 1. With increase  of this pa ramete r ,  g increases  mono-  
tonically, approaching the value of g for uniform flow past  a sphere (Fig. lb). In this case the sphere 
becomes  unstable in the jet and is ejected.  It was not possible to establish exactly the value of Y/R for 
which this phenomenon is observed.  The approximate value of the ra t io  is 2~ 

Variation of the Reynolds number NRe in the range 6.7 �9 104- 2.0 �9 105 has ve ry  little effect on the 
drag coefficient, which remains  pract ical ly  constant in this NRe range if Y/R = const.  

Now let the axis of the s lender  jet be shifted relat ive to the center  of the sphere .  Then the ideal 
fluid flow pattern in the vicinity of the jet convergence point must  be symmet r i c  to the flow pat tern in the 
jet splitting zone. The jet is deflected by the sphere through some angle, and a stabilizing force directed 
toward the jet axis is developed which re turns  the sphere  to the stable equilibrium state.  The angles 
of deviation of the jet axis f rom the ver t ical  behind the sphere  for  noncentral  flow past  the sphere (Fig. ]d) 
were determined experimental ly .  

If the jet axis passes  through the center  of the i m m e r s e d  c i rc le ,  the point of convergence is on the 
same d iameter  as the point where the jet branches .  It is natural to suppose that, just as in the case of 
central  flow, in the f i r s t  approximation we can assume that the stagnation points are  located on the same 
d iameter  if the jet axis is shifted relat ive to the center  of the sphere [1]. The hypothesis of [1] is 
confirmed by experiments (Fig. 2). 

The noted experimental facts, together with the hypothesis of [I], make it possible to construct a 
model for  flow past  a sphere which admits approximate calculation. Use of momentum theory makes it 
possible to find the force which re turns  the sphere to the stable equilibrium state.  It is neces sa ry  to 
know the angle of jet axis deviation f rom the ver t ical  behind the sphere for  noncentral  flow about the sphere 
and the radius of the converging jet. 

The hypothesis of [1] makes it possible to find the angle of jet axis deviation from the ver t ica l .  

Let  us examine the case of s lender  jet flow around a c i rc le .  To find the deviation it is neces sa ry  
to est imate  the distance of the flow branching point f rom the jet axis.  To this end we examine the impact  
of a jet on a flat plate [5]. For  small  width of the jet relat ive to the sphere  diameter ,  in the vicinity of the 
splitting point we can take the adjacent c i rcu la r  a rc  to be a s t ra ight  line tangent to the sphere surface at 
the point of in tersect ion with the jet axis .  
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In this analysis the distance between the flow convergence point and 
the axis can be wri t ten in the form 

l =2 .3  ~d o, ~ :~/2 ~ - - a  (1) 

where do = jet diameter ,  and a = inclination of jet axis to the surface .  
This express ion is valid for small  angles ft. Moreover,  it follows f rom the 
revers ib i l i ty  of the motion that the flow in the vicinity of the point of jet 
convergence behind the body must  be symmet r i c  to the flow in the jet 
splitting zone; thereby the flow will be symmet r i c  about some straight  line 
which passes  through the center  of the c i rc le  and is perpendicular  to the 
diameter  drawn through the stagnation points.  

Fig.  2 
Taking the hypothesis of [1] as the bas ic  assumption and using (1), 

we can calculate the angle of deviation of the jet axis f rom the ver t ica l :  

• = 2 [arc sin (h ]/~) --  arc tg (l / R)] (2) 

Here h = shift of jet axis relat ive to the center  of the c i rc le ,  R = 
radius of the wetted c i rc le ,  I = distance f rom the jet axis to the branching 

It8 g r~l point along an a rc  of the wetted surface,  and ~ is the deviation of the jet 
axis f rom the ver t ica l .  

Fig.  3 
The geometr ic  pat tern  is not ent i re ly acceptable for  proper  de t e r -  

mination of the force acting on the sphere,  since the v iscos i ty  forces  cause 
the leaving jet to be wider than the initial jet. Fo r  quantiative es t imates  it is neces sa ry  to account for 
thickening of the jet. We express  the radius of the leaving jet through the initial values:  r0, v0, v and R 
(initial jet radius,  approaching flow velocity,  kinematic viscosi ty ,  and sphere radius).  We shall use 
boundary l ayer  theory.  For  s lender  jet flow about a c i rc le  the free surfaces  of the bifurcated jet can be 
taken as c i rc les  of radius close to the radius of the i m m e r s e d  sur face .  In the presen t  case the velocity 
at the outer edge of the boundary l ayer  will be an unknown quantity and therefore  we must  add to the 
boundary l ayer  equations the constant discharge equation. The sys tem of equations in the s,n coordinates 
(s is the longitudinal coordinate along the contour, n is the t r ansver se  coordinate,  reckoned along the 
normal  to the profile) takes the form 

V sOY Ors O~vs Ors Ovn ( 3 )  

08 + vn TY'n = ~ On~ Os + - ~ n  = 0 ,  

G = v~ dn  (4) 
0 

Using the identity ov o (vnv} Ov,~ 
V S - -  n On - -  On l)s On 

we t r ans fo rm the f i r s t  equation (3) to the form 
ovs~ o (vnvs) O~v 8 
08 § on - -v  on~ (5) 

We introduce the notation n/5  = ~, where 5 is the thickness of the thin jet flowing over the c i rc le .  
We integrate (5) 

O 0 

We express  the velocity in the form 

v =a~l-~ b~l ~ +  c~l a , a2v~}a~ 2 = o  for ~l = 0 ,  b = 0  

We find the coefficient c f rom the boundary conditions 

c = - -  '/8 a, [ O r  I a.q]~=l = o, v~ = a (~1 - -  l/~ ~3) 

Assuming the velocity at the point so equal to the initial velocity v(s0) = v0, So ~r0,  we wri te  a(s0) = 
3/2v 0 (Fig. 3). 
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The  p r o b l e m  r e d u c e s  to f i n d i n g a  and 5, fo r  which  we  have  two e qua t i ons ,  ob ta ined  f r o m  (6) and (4) 
by  s u b s t i t u t i o n  of the  e x p r e s s i o n  f o r  Vs 

1 

--ds - 2 -  ~13) d~l = - -  8 ( 7 )  
0 

1 

2uR sin -~-5a I(~l - -  t ~3)d~q = G (8) 
o 

o r  

~ (  ~.a z 3t5vR 6G a 2 5 ) = - - ~ - ,  a S =  k - - ) ~ ,  - - = : k  
smx --R- = x, 68 5nR 

E x c l u d i n g  5, we f ind 
d ka a 2 sin x 

dx sin x k 

A f t e r  s o m e  t r a n s f o r m a t i o n s  we ob ta in  the  d i f f e r e n t i a l  equa t ion  

dy - - m y  2sin 8x Y =  a m = - ~  d--b - =  s-]-ffTn z " 

I t  ha s  the  s o l u t i o n  

t l y  = m ( i / s c o s  3 x - c o s x ) §  

S a t i s f y i n g  the i n i t i a l  cond i t ion  a(xo) = 3/2 Vo, xo = s o / R ,  we f ind a 

s in  x 
rn (1/8 cos~ x --  cos z) + % ((so / voR) + m) 

Cons equen t ly ,  
sin xl 

az = m (1/a cos  a xx - -  c o s  xx) -4- ~/~ ((so / voR) -4- m) 

A s s u m i n g  tha t  x l  = ~ - x2for  s m a l l  x2, w h e r e  x2 ~ r l / R  ~ s e / R ,  r i  i s  the f inal  j e t  r a d i u s ,  we f ind a i 
in  the f o r m  x~ 

al = ~]3 (2m -I- so / voR) 

The d i s c h a r g e  fo r  the  i n i t i a l  s e c t i o n  of the  j e t  i s  e x p r e s s e d  a s  G = 7rRo2Vo, fo r  the  f ina l  s e c t i o n  G = 
~'R2x22 2/3a 1. Oi2 the  b a s i s  of the  c o n s t a n t  d i s c h a r g e  cond i t ion ,  we equa te  t h e s e  two e x p r e s s i o n s  and f ind  
the v a l u e  of the  f ina l  j e t  r a d i u s  in  t e r m s  of the  i n i t i a l  p a r a m e t e r s  

6.4_ 5vR~ % 
r~ = (to ~ + (9) 

FO~'YO ] 

A p p l y i n g  the m o m e n t u m  c o n s e r v a t i o n  t h e o r e m  and u s i n g  (2) and (9), we c a l c u l a t e  the j e t  r e a c t i o n  
f o r  n o n c e n t r a l  f low about  a s p h e r e  

t Pvvnd~ = F 

The  f o r c e  a c t i n g  to r e t u r n  the  s p h e r e  to the e q u i l i b r i u m  s t a t e ,  d i r e c t e d  a long  the  x a x i s ,  i s  e x p r e s s e d  
a s  

Fx = uproar02 (ro / rl) 2 sin • 

The  d r a g  f o r c e  of the  s p h e r e  in the j e t  i s  

E ,  = ~pr02 v0 ~ [l - -  (r0 / rl) 2l 

The  d r a g  coe f f i c i en t ,  c a l c u l a t e d  u s i n g  the  f o r m u l a  

_ S F ~ /  p ro  2~d 2 

fo r  the  s l e n d e r  j e t  c o i n c i d e s  wi th  the e x p e r i m e n t a l  v a l u e s .  The  c a l c u l a t e d  da ta  f o r  the  d e v i a t i o n  of the j e t  
ax i s  f r o m  the v e r t i c a l  and  the s t a b i l i z i n g  f o r c e  f o r  d i f f e r e n t  d e v i a t i o n  a n g l e s  a g r e e  qu i te  wel l  wi th  the  
e x p e r i m e n t a l  da t a  (F ig .  l c  and  d)o 
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